Extensions of Continuous Selections

Antonio Cruz

Centro de Ciencias Matemticas, UNAM

29 de enero de 2020

Definition

Let (X, τ) be a topological space, and

 $\mathfrak{F}\subseteq F(X)=\{A\subseteq X\mid X\backslash A\in\tau\}\backslash\{\emptyset\}.$

 $f: \mathfrak{F} \longrightarrow X$ is called a continuous selection if it is a choice function which is continuous with respect to the Vietoris Topology.

Definition

Let (X, τ) be a topological space, and

 $\mathfrak{F} \subseteq F(X) = \{A \subseteq X \mid X \backslash A \in \tau\} \backslash \{\emptyset\}.$

 $f: \mathfrak{F} \longrightarrow X$ is called a continuous selection if it is a choice function which is continuous with respect to the Vietoris Topology.

Notation

- Selections who's domain is [X]ⁿ or [X]^{≤n} will be called n-continuous selections or ≤n-continuous selections respectively.
- We write $a \to_f x$ when $x \in a \in dom(f)$ and f(a) = x.

What you need to know

Fix (X, τ) ...

More notation

Let f be a continuous selection such that $[X]^n \subseteq dom(f)$ and $\mathcal{U} = \{U_1, \ldots, U_n\} \subseteq \tau$. We write $\mathcal{U} \rightrightarrows U_i$ if and only if whenever we take $y_1 \in U_1, \ldots, y_n \in U_n$, it happens that $\{y_1, \ldots, y_n\} \rightarrow_f y_i$

What you need to know

Fix (X, τ) ...

More notation

Let f be a continuous selection such that $[X]^n \subseteq dom(f)$ and $\mathcal{U} = \{U_1, \ldots, U_n\} \subseteq \tau$. We write $\mathcal{U} \rightrightarrows U_i$ if and only if whenever we take $y_1 \in U_1, \ldots, y_n \in U_n$, it happens that $\{y_1, \ldots, y_n\} \rightarrow_f y_i$

Theorem (folklore)

Let $n \in \omega$ and f be a choice function over $[X]^n$. f is a n-continuous selection if and only if for every $\vec{x} = \{x_1, \ldots, x_n\} \in [X]^n$, there exist $\mathcal{U} = \{U_{x_1}, \ldots, U_{x_n}\} \subseteq \tau$ such that:

- For every $i \leq n$, $x_i \in U_{x_i}$.
- If $i \neq j$ then $U_i \cap U_j = \emptyset$.
- $\mathcal{U} \rightrightarrows_f U_i$ if and only if $\vec{x} \rightarrow_f x_i$.

Theorem (V. Gutev)

For every $n \in \omega \setminus \emptyset$, a space (X, τ) admits a $\leq n + 1$ -continuous selection if and only if it admits a $\leq n$ -continuous selection and a n + 1-continuous selection.

Theorem (V. Gutev)

For every $n \in \omega \setminus \emptyset$, a space (X, τ) admits a $\leq n + 1$ -continuous selection if and only if it admits a $\leq n$ -continuous selection and a n + 1-continuous selection.

Question(M.Hrusak, I. Martnez Ruiz, V. Gutev)

Does there exists a space which admits a 2-continuous selection but not admits a n-continuous selection for some $2 < n \in \omega.$

Theorem (V. Gutev)

For every $n \in \omega \setminus \emptyset$, a space (X, τ) admits a $\leq n + 1$ -continuous selection if and only if it admits a $\leq n$ -continuous selection and a n + 1-continuous selection.

Question(M.Hrusak, I. Martnez Ruiz, V. Gutev)

Does there exists a space which admits a 2-continuous selection but not admits a n-continuous selection for some $2 < n \in \omega.$

Definition (isomorphisms of selections)

Let $n \in \omega$, and f, g be *n*-continuous selections over spaces X and Yrespectively. We say $\theta : X \longrightarrow Y$ is an isomorphism from f to g if and only if it is bijective for every $a \in [X]^n$, it happens that $\theta[f(a)] = g(\theta[a])$

Definition (Regular selections)

A continuous selection f over a space (X, τ) it's called regular if and only if for every $x, y \in X$, it happens that $|f^{-1}[\{x\}]| = |f^{-1}[\{x\}]|$

Definition (Regular selections)

A continuous selection f over a space (X, τ) it's called regular if and only if for every $x, y \in X$, it happens that $|f^{-1}[\{x\}]| = |f^{-1}[\{x\}]|$

Lemma

Let $2 \le n \in \omega$, and f be a n- continuous selection over X. If k is such that $n \le k$ and $x \in [X]^k$, then

$$P_n^k(x) := \{y \in [X]^k \mid f|_{[y]^n} \text{ is isomorphic to } f|_{[x]^n} \}$$

is clopen in $[X]^k$.

Lemma (key)

Let $2 \le n \in \omega$, and f be a $\le n$ - continuous selection over X. If k is such that $n \le k \le 2n$ and $x \in [X]^k$ is such that $f|_{[x]^n}$ is not regular, then there exists a continuous selection who's domain is $P_n^k(x)$.

Lemma (key)

Let $2 \le n \in \omega$, and f be a $\le n$ - continuous selection over X. If k is such that $n \le k \le 2n$ and $x \in [X]^k$ is such that $f|_{[x]^n}$ is not regular, then there exists a continuous selection who's domain is $P_n^k(x)$.

Proposition

Let $2 \le n \in \omega$, and f be a $\le n$ - continuous selection over X. If k is such that $n \le k \le 2n$ and for every $x \in [X]^k f|_{[x]^n}$ is not regular, then X admits a k-continuous selection.

Lemma (key)

Let $2 \le n \in \omega$, and f be a $\le n$ - continuous selection over X. If k is such that $n \le k \le 2n$ and $x \in [X]^k$ is such that $f|_{[x]^n}$ is not regular, then there exists a continuous selection who's domain is $P_n^k(x)$.

Proposition

Let $2 \le n \in \omega$, and f be a $\le n$ - continuous selection over X. If k is such that $n \le k \le 2n$ and for every $x \in [X]^k f|_{[x]^n}$ is not regular, then X admits a k-continuous selection.

Lemma

If p is a prime number and and f is a $\leq p$ - continuous selection over X, then for every $p \leq k$ such that p does not divides k and for every $x \in [X]^k$ $f|_{[x]^p}$ is not regular.

Theorem

A.C If $n \in \omega$ and X admits a $\leq n$ -continuous weak selection, then for every non prime number k between n and 2n, X admits a k-continuous selection.

Theorem

A.C If $n \in \omega$ and X admits a $\leq n$ -continuous weak selection, then for every non prime number k between n and 2n, X admits a k-continuous selection.

Corollary

If $n \in \omega$, n + 1 is non prime and X admits a $\leq n$ -continuous selection, then X admits a < n + 1-continuous selection

Theorem

A.C If $n \in \omega$ and X admits a $\leq n$ -continuous weak selection, then for every non prime number k between n and 2n, X admits a k-continuous selection.

Corollary

If $n \in \omega$, n + 1 is non prime and X admits a $\leq n$ -continuous selection, then X admits a $\leq n + 1$ -continuous selection

Corollary

X admits a *n*-continuous selection for every $n \in \omega$ if and only if it admits a *p*-continuous selection for every prime number.

The center of the problem

The real remaining question is: What can you say about $P_n^k(x)$ when $f|_{[x]^n}$ is regular?. In fact, here is where most of topological part of the problem really starts and the word selection looses importance.

Thanks for you attention